
1 Language Definition File XML Specification

The language definition file (lang_def.xml) describes two parts:
 block language
 Workspace, which is the programming environment for the specified block language.

(Note: The lang_def.dtd files specifies rules, elements, attributes within lang_def.xml.)

2 Specifying the Block Language

2.1 Block Genus
A block genus describes the properties that define a common set of blocks. For example,
fd is a block genus that describes all forward blocks in Starlogo. For each block in your
block language, you must specify a BlockGenus.

Block Genus Attributes Description
name Unique name for genus
kind Block genus class. Currently, codeblocks uses three

kinds: command, data, variable
initlabel The initial label for a block in this genus.
color The RGB color for a block in this genus.
editable-label If “yes”, block label is user-editable. Unless specified

in block genus, editable-label = “no” by default (i.e.
genus fd is not editable.)

label-unique If “yes”, every block instance of this genus must have
a unique block label. Set to “no” by default.

is-label-value If “yes,” its block label determines the block value.
This attribute is applicable to data blocks (i.e. number,
sting, true, false). Set to “no” by default.

label-prefix A string to always precede its block label

<BlockGenus name="fd" kind="command" initlabel="forward" color="255 0 0">
 <description>
 <text>Agents moves <arg n="1"/> steps forward.</text>
 <arg-description n="1" name="steps">Number of steps to move. </arg-description>
 </description>
 <BlockConnectors>
 <BlockConnector label="steps" connector-kind="socket" connector-type="number">
 <DefaultArg genus-name="number" label="1"></DefaultArg>
 </BlockConnector>
 </BlockConnectors>
</BlockGenus>

Figure 1: The forward block and its block genus fd specification.

label-suffix A string to always succeed its block label
sockets-expandable If “yes,” sockets expand whenever a block is

connected to them. Set to “no” by default.
is-starter If “yes,” this block genus begins block stacks of code.

Set to “no” by default.
is-terminator If “yes,” this block genus ends block stacks of end.

Set to “no” by default.

2.1.1 Description
The description element specifies the formatting and text of a user-friendly description of
the blocks within this genus.

(Note: this is not completely specified yet.)

2.1.2 BlockConnectors
The BlockConnectors specifies the properties of all the connecting points of a block
genus. There are four kinds of connectors, differing in their meaning and location:
 Plug: Returns a value. Resides on the left side of a block.
 Socket: Reads in a value or branches the flow of execution. Resides on the right side

of a block.
 Before: Connects to previous command. Resides on the top side of a block.
 After: Connects to the next command. Resides on the bottom side of a block.

Each connector has a type that determines its shape and the data (number, string, boolean,
polymorphic) or command type that it reads/returns/connects to. Before and After
connectors are always of type command. A Socket may be of any type. Similarly, a Plug
returns any type except command.

Figure 2: The if genus and its block has two sockets: one Boolean labeled “test” and a command
labeled “then.” The true genus and its block has a boolean plug mirrored on both sides.

Sockets and Plugs are specified in the xml file. Before and After connectors are
dynamically generated, depending if the genus kind is command or if the genus is a
starter or terminator.

BlockConnector Attributes Description
label Label that resides by the connector on the block. For

example, steps is a label of forward’s socket.
label-editable If “yes,” connector label is user-editable. Set to “no”

by default.
connector-kind Determines if connector is a “plug” or a “socket.”

Before and After connectors are dynamically
generated depending on genus kind, starter, or
terminator properties.

connector-type Data (number, string, boolean, polymorphic) or
command type.

position type Determines the position of this connector.
single: either left or right depending on kind
mirror: plug is mirrored on the right side of block
bottom: sockets are placed in the bottom of the block

Some blocks have default arguments or blocks that are connected to its connectors when
the block is dragged onto the block canvas. For example, the forward block has a default
argument, the number block with its value set to 1. Default arguments can be convenient,
especially if the default argument is a common choice to connect to a block.

Default Argument Attribues Description
genus-name the block genus name of the default argument
label the label (if genus is editable) of the argument

2.1.3 BlockStubs (Advanced)
Some block genuses may have dynamically generated blocks when its block instance is
dragged onto the block canvas. These dynamically generated blocks are called Stubs,
and they reference the parent block they were created from. Examples of stubs are
getters and setters for variables. The block genus agent-var-boolean specified below has
two stubs: a getter and a setter.

Figure 3: The genus agent-var-boolean has two stubs, a getter and a setter.

Currently there are five stubs available, each with its own genus:
 getter: a data block returns the value of its parent block.

<BlockGenus name="agent-var-boolean" kind="variable" initlabel="agent boolean"
editable-label="yes" color="65 105 225">
...
 <BlockConnectors>
 <BlockConnector connector-kind="socket" connector-type="boolean">
 </BlockConnector>
 </BlockConnectors>
 <Stubs>
 <Stub stub-genus="setter"></Stub>
 <Stub stub-genus=”getter”></Stub>
 </Stubs>
 <LangSpecProperties>
 <LangSpecProperty key="scope" value="agent"></LangSpecProperty>

 setter: a command block that sets the value of its parent block
 inc: a command block that increments the value of its parent block by a fixed value.
 caller: a command block that executes the commands enclosed by its parent. This

stub is used by procedure blocks to create their call blocks.
 agent: a data block that returns the value its parent block for a particular agent

2.1.4 LangSpecProperties
The Codeblocks library is language independent and not all properties specified in the
language definition file can cover all the properties needed by a block language. Each
LangSpecProperty has a key-value pairing that when loaded is saved within the
properties HashMap in the BlockGenus class.

2.2 BlockFamilies
Block families provide additional convenience for the user by grouping block genuses
that have similar functionality into families. When blocks are rendered in the workspace,
blocks with families have an additional drop down box included in its graphical block.
Family members are included in this drop down box.

Figure 4: The forward and back block genuses are in the same family. The graphical block
shows its family members in its drop down.

3 Specifying the Workspace

3.1 BlockDrawerBars and BlockDrawer
BlockDrawerBars manage BlockDrawers, which are block containers. BlockDrawerBars
contain a series of buttons, each button toggling the visibility of one block drawer.

There are four types of block drawers, each differing in behavior and functionality.
 Default: contains one instance of each block contained. Blocks may be dragged and

dropped within the drawer and to and from the block canvas or other block drawers.
 Factory: contains blocks that can produce an infinite amount of block instances.

When a block is picked from a factory drawer, a new instance is created. When a
block is dragged back to a factory drawer, the block is deleted. The blocks contained
within this drawer never move, but only produce new blocks.

 Page: contains blocks for a particular page

<BlockFamilies>
 <BlockFamily>
 <FamilyMember>fd</FamilyMember>
 <FamilyMember>bk</FamilyMember>
 </BlockFamily>

 Custom: Similar to the default block drawer, except that this drawer may be saved
with the project for future use.
BlockDrawer Attributes/Elements Description

name the name of this drawer. The name is
displayed in the button corresponding to this
drawer

type drawer type: default, factory, page, custom.
Set to “default” by default.

is-open If “yes,” drawer is displayed at workspace
startup. Set to “no” by default.

button-color The color of the corresponding button
BlockGenusMember the genus name a block within this drawer
Separator Formatting property. If specified between

BlockGenusMember elements, a line is drawn
between the genus members in the graphical
drawer.

NextLine Formatting property. If specified between
BlockGenusMember elements, the genus
member after the NextLine element is drawn in
the succeeding row in the drawer.

3.2 Pages
Pages divide up and organize the block workspace. Pages may have associated block
drawers that contain blocks that are “special” to that page.

Page Attributes Description
page-name name of this page. Name is drawn on the page.
drawer-name drawer associated with this page

